Hibernates-2B-R1-V1
Hibernates-2B-R1-V1
Hibernates-2B-R1-V1
  • Hibernates/Hibernates-2B-R1-V1
  • Hibernates/Hibernates-2B-R1-V1 · Discussions
  • Hibernates/Hibernates-2B-R1-V1 at main
  • Hugging Face – The AI community building the future.
  • Commits · Hibernates/Hibernates-2B-R1-V1
  • .gitattributes
  • Update README.md · Hibernates/Hibernates-2B-R1-V1 at 7ecf221
  • initial commit · Hibernates/Hibernates-2B-R1-V1 at 1a2ae20
  • README.md
  • Upload 9 files · Hibernates/Hibernates-2B-R1-V1 at d02de7c
  • generation_config.json
  • config.json
  • model-00001-of-00002.safetensors
  • model-00002-of-00002.safetensors
  • model.safetensors.index.json
Powered by GitBook
On this page
  • Model Overview
  • Technical Specifications
  • Usage Guide
  • Performance Characteristics
  • License and Usage
  • Citation
  • Acknowledgments
  • Download Instructions

Hibernates/Hibernates-2B-R1-V1

A highly efficient 2B parameter language model optimized for reasoning and dialogue tasks.

Model Overview

Hibernates-2B is a custom transformer architecture designed for advanced language understanding and generation. Built with performance and efficiency in mind, it leverages state-of-the-art techniques for natural language processing.

Key Features

  • 2B Parameters

  • 4096 Token Context Window

  • Custom Transformer Architecture

  • Optimized for CPU and GPU Inference

  • Multi-Turn Dialogue Support

Technical Specifications

  • Architecture: Custom Transformer

  • Parameters: 2 Billion

  • Context Length: 4096 tokens

  • Model Type: Decoder-only

  • Tokenizer: Custom WordPiece

  • Format: SafeTensors

Usage Guide

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_id = "Hibernates-2B-R1-V1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Example conversation
messages = [
    {"role": "system", "content": "You are a helpful AI assistant."},
    {"role": "user", "content": "How can you help me today?"}
]

# Generate response
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
    inputs["input_ids"],
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

Performance Characteristics

Strengths

  • Efficient Resource Usage

  • Strong Reasoning Capabilities

  • Multi-Turn Dialogue

  • Context Awareness

  • Instruction Following

Considerations

  • Resource Requirements: 8GB+ GPU RAM recommended

  • Task Specificity: Best suited for dialogue and reasoning tasks

  • Language Support: Primary focus on English

  • Model Size: Optimized for balance of performance and efficiency

License and Usage

  • Research and commercial use permitted

  • Attribution appreciated but not required

  • No warranty provided

Citation

If you use this model in your research, please cite:

@software{hibernates2b_2024,
  title={Hibernates-2B: Efficient Language Model for Reasoning},
  year={2024},
  version={R1-V1}
}

Acknowledgments

Built using PyTorch and Hugging Face Transformers. Special thanks to the open-source AI community.

Download Instructions

Due to file size limitations, the model files are hosted externally. Download them from:

Place these files in the root directory of the project before running.

NextHibernates/Hibernates-2B-R1-V1 · Discussions

model-00001-of-00002.safetensors
model-00002-of-00002.safetensors