Hibernates-MEA-R2-V0

An advanced AI system for visual sequence processing, extending the capabilities of MCG-NJU/videomae-large-finetuned-kineticsarrow-up-right.

Key Performance Indicators:

  • Optimal Loss: 0.4894

  • Peak Accuracy: 80.43%

System Overview

Advanced AI architecture optimized for visual sequence understanding:

  • Core: Deep learning transformer system

  • Data Handling: Sequential frame processing

  • Main Function: Visual content categorization

  • Learning Cycles: 50 complete epochs

  • Results Summary:

    • Maximum Precision: 80.43% (epoch 7)

    • Consistent Performance: 75%+ maintained

Applications & Requirements

Core Applications

  • Visual sequence interpretation

  • Dynamic content analysis

  • Environmental context recognition

  • Time-series visual processing

Technical Considerations

  • Task-specific optimization

  • Computing needs: High-performance GPU

  • Memory constraints: 4-sample batching

  • Data format: Standardized input required

Development Data

Implementation Details:

  • Cycle Structure: 65 iterations per epoch

  • Development Span: 3250 total iterations

  • Assessment Methods: Dual metric system (loss/accuracy)

  • Progress Metrics:

    • Starting Point: 54% accuracy

    • Final Result: 73.91%

    • Best-case Loss: 0.4894

Implementation Specifications

Core Parameters

Implementation utilized the following configuration:

  • Learning Rate: 1e-05

  • Training Units: 4 per batch

  • Validation Units: 4 per batch

  • Random Seed: 42

  • Optimization: Advanced weight management with adamw_torch

    • Beta values: (0.9,0.999)

    • Epsilon: 1e-08

  • Rate Control: Linear adjustment

  • Warmup Ratio: 0.1

  • Total Iterations: 3250

Development Progress

Cycle Loss
Epoch
Step
Validation Loss
Success Rate

0.6186

0.02

65

0.7367

0.5435

0.5974

1.02

130

0.8185

0.5435

0.5491

2.02

195

0.8372

0.5435

0.6156

3.02

260

0.6620

0.5870

0.6255

4.02

325

0.6835

0.5435

0.438

5.02

390

1.2116

0.5435

0.4653

6.02

455

0.6002

0.5652

0.5876

7.02

520

0.4894

0.8043

0.3801

8.02

585

0.8324

0.5435

0.4474

9.02

650

1.1581

0.5652

0.694

10.02

715

0.5354

0.7174

0.4773

11.02

780

0.6181

0.6957

0.6208

12.02

845

0.5677

0.7609

0.344

13.02

910

0.7452

0.6087

0.254

14.02

975

0.6362

0.7391

0.4578

15.02

1040

0.8304

0.6957

0.3954

16.02

1105

0.6049

0.7609

0.248

17.02

1170

0.9506

0.6739

0.1334

18.02

1235

1.1876

0.6739

0.534

19.02

1300

0.6296

0.7391

0.3556

20.02

1365

1.3007

0.6957

0.5439

21.02

1430

1.5066

0.6739

0.4107

22.02

1495

0.9273

0.8043

0.61

23.02

1560

1.0008

0.7174

0.6482

24.02

1625

0.7548

0.7609

0.199

25.02

1690

0.7917

0.7826

0.1185

26.02

1755

0.7529

0.7826

0.3886

27.02

1820

0.8627

0.7609

0.0123

28.02

1885

1.3886

0.7174

0.5328

29.02

1950

1.2803

0.6957

0.2961

30.02

2015

1.4397

0.7174

0.1192

31.02

2080

2.2563

0.6304

0.145

32.02

2145

1.0465

0.7609

0.0924

33.02

2210

0.9859

0.7826

0.1016

34.02

2275

1.0758

0.7826

0.1894

35.02

2340

1.2088

0.7609

0.2657

36.02

2405

1.5409

0.7391

0.1235

37.02

2470

1.2736

0.7609

0.1539

38.02

2535

1.2608

0.7609

0.03

39.02

2600

1.2058

0.7609

0.1447

40.02

2665

1.1072

0.7609

0.0888

41.02

2730

1.1454

0.7826

0.0016

42.02

2795

1.1194

0.7826

0.1489

43.02

2860

1.2170

0.7609

0.0004

44.02

2925

1.1894

0.7609

0.0004

45.02

2990

1.3329

0.7391

0.0014

46.02

3055

1.1887

0.7609

0.1675

47.02

3120

1.2652

0.7391

0.012

48.02

3185

1.3228

0.7391

0.0475

49.02

3250

1.3507

0.7391

System Versions

  • Transformers 4.46.2

  • Pytorch 2.0.1+cu117

  • Datasets 3.0.1

  • Tokenizers 0.20.0

Last updated